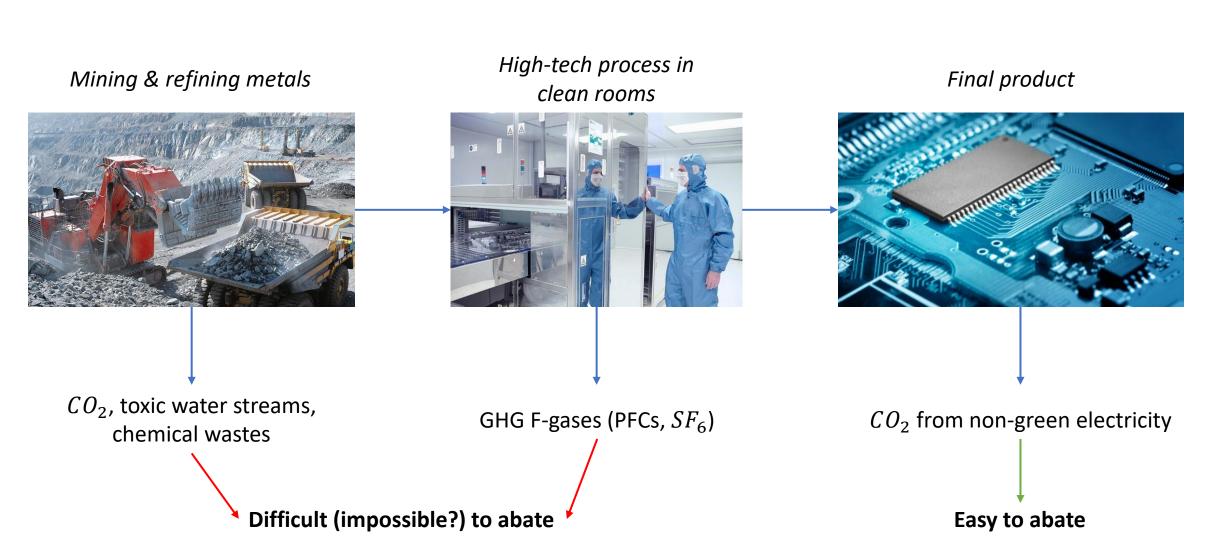
Circular economy: promoting « green » engineering through policy

The electronics industry as an example

Towards a « climate-neutral digital economy »


- European Commission presented its « Green Deal »
 - EU climate-neutral by 2050
 - Digitalization of economy must accelerate the greening of society

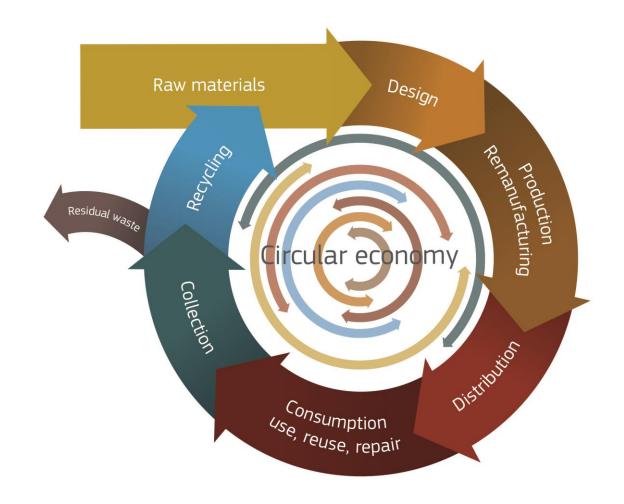
- Can a digital economy be sustainable?
 - What are the negative effects of digitalization?
- Here: focus on consumer electronics
 - Smartphone as toy example


EU Green Deal also concerns research funding in Switzerland!

How do smartphones emit GHGs?

End-of-life treatment of electronics

- Electronic waste volumes grows 3-5% per year worldwide
 - Most goes to landfill or is burned [5,6]
- Theoric value of waste [6]:


 Only PCBs from high-end products can be recycled today with profits [7]

In Ghana, illegaly exported e-waste is burned to recycle copper [4]

Circular economy as a new paradigm

- "Value of products, materials and resources is maintained for as long as possible and the generation of waste is minimized"
- Shift from the "linear economy"
- "Essential contribution to a sustainable, low carbon, resource efficient and competitive economy" (European Union, [3])
- How can it be applied to electronics?

Sustainability through green engineering [1]

- Safer substitution materials for hazardous metals
 Simpler end-of-life treatment, reduced risk of eco-toxicity
- 2. New processes to digest and recover mixed materials Current recycling rate of critical metals is <1%
- 3. Transparency on products to facilitate recycling Regulations for manufacturers to disclose metals in products
- 4. Eco-design for disassembly, via *modular designs*Facilitate reparation, recycling, upgrading, refurbishing

R&D subsidies
Tax on metals

Regulation

A policy mix towards circular economies [2]

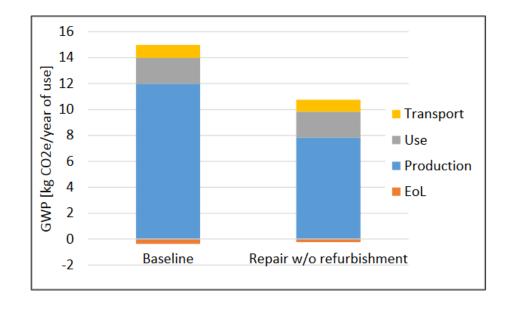
- A tax on all metals [...] to increase material usage efficiency
- External costs are internalized through gradually expanded and increased environmental taxes

Taxation

- Eco-design directives for repairability
- Technical requirements specifying the quantity of materials that can be used in given products
 - Substitute metals where appropriate, increase material efficiency

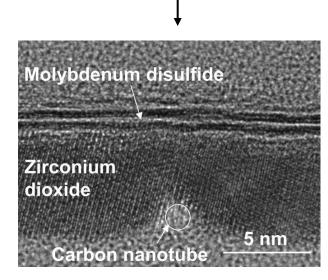
Regulation

- Extended producer responsibility schemes
 - Producer is also responsible for the end-of-life treatment


Legal

Eco-design example

- Fairphone: design of fair smartphones
 - Goal to reduce GHG emissions
 - Not 100% circular, but « state-of-the-art »
- Eco-design: all components can be disassembled
 & bought separately
- Transparency: life-cycles assesments studies ordered by Fairphone [11]
 - GWP dominated by fabrication
 - Extending lifetime reduces GHG/year of use


Fairphone 3: 419€

Impact of a circular economy for ICT?

Context: High-tech ICT relies on complex integrated nm-scale designs (e.g. smartphones)

- Taxing metals: recycling should be cheaper than mining
 - ... however 100% recycling of electronics is impossible
 - Absence of literature, no proposals of tax levels
 - Impact on prices is not quantified
- Eco-design may brake ICT innovation & digital economy
 - Target lifetime of a « sustainable » smartphone ?
 - 5, 15, 100, ... years?
 - Is a digital economy still feasible if devices cannot evolve?

Cross-section of 1-nm transistor [10]

Conclusion

- Electronics: many externalities are not reflected in the final price
 - GHG emissions at fabrication
 - Partial or non-existent recycling
- A more circular economy helps to reduce these externalities
- ... but it won't happen unless adapted policy is implemented!
 - Eco-design directives, transparency on products
 - Tax on metals
 - Internalizing the environmental costs (GHG, ...)
- Impacts on i) prices ii) innovation iii) productivity are unknown
- Circular economy is a paradigm, it yields interesting tools
 - Joint effort in engineering and public policy

References

- 1. O'Connor, M. P., Zimmerman, J. B., Anastas, P. T., & Plata, D. L. (2016). A strategy for material supply chain sustainability: enabling a circular economy in the electronics industry through green engineering.
- 2. Ekvall, T., Hirschnitz-Garbers, M., Eboli, F., & Śniegocki, A. (2016). A systemic and systematic approach to the development of a policy mix for material resource efficiency. Sustainability, 8(4), 373.
- 3. Closing the Loop An EU Action Plan for the Circular Economy (Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions No. COM(2015) 614/2)
- 4. The Burning Truth Behind an E-Waste Dump in Africa, Smithsonian Magazine, https://www.smithsonianmag.com/science-nature/burning-truth-behind-e-waste-dump-africa-180957597/ (online, 28/11/2020)
- 5. Half of plastics in electronic waste not recycled in EU, Euractiv, https://www.euractiv.com/section/energy-environment/news/half-of-plastics-in-electronic-waste-not-recycled-in-eu/ (online, 28/11/2020)
- 6. Cucchiella, F., D'Adamo, I., Koh, S. L., & Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews, 51, 263-272.
- 7. D'Adamo, I., Ferella, F., Gastaldi, M., Maggiore, F., Rosa, P., & Terzi, S. (2019). Towards sustainable recycling processes: Wasted printed circuit boards as a source of economic opportunities. Resources, Conservation and Recycling, 149, 455-467.
- 8. Dechezleprêtre, A., & Sato, M. (2017). The impacts of environmental regulations on competitiveness. Review of Environmental Economics and Policy, 11(2), 183-206.
- 9. Van Leeuwen, G., & Mohnen, P. (2017). Revisiting the Porter hypothesis: an empirical analysis of green innovation for the Netherlands. Economics of Innovation and New Technology, 26(1-2), 63-77.
- 10. Smallest Transistor Ever, Berkeley Lab, https://newscenter.lbl.gov/2016/10/06/smallest-transistor-1-nm-gate/ (online, 28/11/2020)
- 11. Life Cycle Assessment of the Fairphone 2, Fraunhofer Institute, https://www.fairphone.com/wp-content/uploads/2016/11/Fairphone 2 LCA Final 20161122.pdf, (online, 28/11/2020)